陶瓷厂家
免费服务热线

Free service

hotline

010-00000000
陶瓷厂家
热门搜索:
成功案例
当前位置:首页 > 成功案例

当基于CMX618的数字语音通信系统

发布时间:2021-09-14 20:26:15 阅读: 来源:陶瓷厂家

基于CMX618的数字语音通信系统

0 引 言

近年来,通信事业发展迅速,各种新技术相继出现,使人们对通信质量的要求更为苛刻,以致频谱资源越来越紧张。在保证良好通信质量的情况下,如何提高频谱利用率,已经成为一个难题。通信系统中,语音编码技术是移动通信数字化的基础,语音编码决定了接收的语音质量和系统容量。低比特率语音编码提供了解决该问题的一种方法,在编码器能够传送高质量语音的前提下,语音编解码比特率越低,就可以在一定的带宽内容纳更多的语音通道。因此,人们不断地寻求新的编码方法,以求在低比特率的前提下,提供较高的语音质量。

英国CML公司推出的语音编解码芯片CMX618,能够以较低的比特率进行编解码处理,并保证很高的语音质量。在此基于CMX618设计实现了一个数字语音通信系统,该系统结构简单,但功能强大,而且它的工作电压很低,功耗很小,非常适合通信领域开发使用。

l CMX618功能与特点

1.1 RALCWI算法

CMX618是接近长话级的半双工语音编解码芯片,通过一种新的数据速率算法技术 RALCWI技术,对语不得随便拆卸音进行编解码处理。RALCWI是一种鲁棒的先进的复杂性波形插入技术,与其他语音编解码技术不同,它使用独有的信号分解和参数编码方法,可确保在较高的压缩率下有很好的语音质量。在声码器中,采用RALCWI技术实现的语音质量与编码位速率在4 Kb/s以上的标准声码器话音质量基本相符。它的MOS(平均意见得分)处于3.5~3.6之间,而且表现相当优秀。

RALCWI声码器以帧一帧为基础进行传输。在8 kHz的采样速率下,对语音信号进行分帧处理,每帧语音包含160个采样点,形成20 ms的元语音帧。语音编码器以较高的计时分辨率(8次/帧)进行语音分析,对每一个语音段都会生成一系列的评估参数。然后,使用不同的矢量量化(VQ)方法,这些估算参数被量化生成41 b,48 b或55 b的帧。值得一提的是,这些向量量化值是以多语言语音为基础进行混合编排的,包含了东西方多种语言的语音采样值。

1.2 芯片主要功能及特点

CMX618语音编解码芯片体积小,性能高,功耗低,其具体特点如下:

(1)编码时,有三种位速率可供选择(2 050 b/s,2 400 b/s或者2 750 b/s)。在选择前向纠错编码(FEC)的情况下,可通过信道编码和交织处理形成3 600 b/s的位数据流(60 ms/216 b的数据包或80 ms/288 b数据包)。

(2)解码时,可选择前向纠错(FEC)解码器对输入编码后的语音位流(216 b/60 ms或者288 b/80 ms的数据包)进行解交织和信道解码,生成纠错后的编码语音位速率为2 050 b/s,2 400 b/s或者2 750 b/s,速率依据所选的模块而定。当使用FEC解码器时,可利用 软决策 方法增强解码功能,减小误码的产生。

(3)内部含有一个集成的语音压缩/解压器(CODEC),实现模拟语音到低位速率编码的压缩/解压过程。

(4)芯片大部分功能,均可通过软件编程的方式,配置内部的寄存器来实现,简单方便。

(5)具有非连续发送检测(DTX)、舒适噪声生成器(CNG)、语音激活检测(VAD)和双音多频信号检测(DTMF)的检测和产生等辅助功能,使语音性能达到最佳。

1.3 CMX618工作原理

CMX618内部结构图如图1所示。

由结构图可以看出,CMX618主要由音频压缩/解压器(CODEC)、RALCWI编解码器、前向纠错编解码器和其他特殊功能模块几部分组成。

编码时,输入的模拟语音首先要经过音频压缩/解压器(CODEC)模块,进行调节增益、A/D转换、滤波和压缩处理,然后进入编码器中开始编码。编码后,如果选择使用前向纠错(FEC)功能,则会对编码进行纠错处理,尽量消除误码。这样,编码后的语音数据,按选择的位速率和帧的结构生成数据包,利用C-BUS串行总线,传输到微控制器LPC2138中。

解码是编码的逆处理过程。经C-BUS串行总线传输的数字语音,进入解码器(可选择FEC功能)开始解码,然后经过解压、滤波、D/A转换、调节增益等处理后,就成为可以听到的模拟语音。另外,在编码和解码期间,如果选择一些辅助功能,例如非连续发送检测(DTX)、语音激活检测(VAD)或双音多频信号检测(DTMF)时则需另行处理。

2 系统设计实现

2.1 微控制器

ARM微控制器具有内核耗电少,功能强,成本低等优点,现在多应用于无线通信、GPS、智能开发等诸多领域。这里选用PHILIPS公司的LPC2138作为数字语音通信模块的主控制器。LPC2138是一个基于支持实时仿真和嵌入式跟踪的32位ARM7TDMI-SCPU的微控制器芯片,较小的封装和很低的功耗使LPC2138特别适用于小型系统中。此外,由于LPC2138片内集成了ROM,RAM,A/D和多个外设模块,如通用I/O口、定时器、串行口等,因此非常适合于通信关、协议转换器、软件modem、语音识别、低端成像等场合,为这些应用提供大规模的缓冲区和强大的处理功能。2.2 系统的硬件设计与实现

基于CMX618的语音通信模块主要由语音编解码器CMX618和LPC2138组成,如图2所示。

该语音浸渍在溶液中通信系统使用CMX618内置的CODEC模块,其内部集成了A/D和D/A转换、通道滤波、增益调节等功能,足以满足对模拟语音的抽样、量化等操作的指标要求。因此,无需再外接芯片,也节省了大量的物理空间,这在实际的开发设计中是十分重要的。

微控制器LPC2138通过C-BUS串行总线与CMX618连接。C-BuS是一个四线中断一驱动串行系统,可在主控制器和CMX618内部寄存器间进行数据传输、控制或状态信息的发送。

2.3 系统的软件设计与实现

系统的软件设计主要是编写CMX618的驱动程序,以及对主控制器LPC2138进行编程实现对CMX618的控制。在上电后,首先应初始化CMX618和LPC2138。对语音编解码芯片,要配置其中的一些功能寄存器,这包括设置编解码位速率、组帧结构、增益大小、辅助功能选用以及开启中断标志位等;对主控制芯片,则要配置接口方式、中断条件和传输速率等。

实际应用中,为使编解码过程中的纠错能力达到最佳,在使用前向纠错(FEC)编码器处理语音编码时。可选择声码器帧以3 20 ms或4 20 ms的形式进行数据包传输。这种把多帧数据进行封装、打包传输的形式,更有效地抑制了误码的产生。

这里,要注意CMX618语音编解码芯片的状态(state)寄存器经过计算机控制步进机电(地址为MYM40)。编码和解码操作在状态寄存器中都有对应的标志位,当采用中断方式编解码时,每次要先读出状态寄存器中对应标志位的值,只有当对应标志位的值为 1 时,才会产生中断,执行相应的操作,如图3所示。

其中,在状态(state)寄存器(地址为MYM40)中对应的状态标志有VDA,VDW,RDY。其中,VDA为编码标志位;VDW为解码标志位;RDY为等待配置标志位。

2.4 关键问题

(1)采用RALCWI算法时,由于存在算法抖动,会使编码每一帧时花费的时间不同,这使微处理器对输出数据的时间不好掌握。为解决此问题,在编码时,会给微处理器一条指令,只要编码可行,就会进行数据传输;在解码时,则会增加一个初始延迟时间,避免CODEC因无采样数据而产生时间空隙。(2)为了提高微控制器LPC2138与CMX618间的传输速率,使用C-BUS串行总线读/写寄存器时,可采用 数据流 的方法传输数据,即只需要一个地址/指令,就可以传输多个数据字节。具体实例如图4和图5所示。

利用C-BUS串行总线,写入CMX618内部寄存器的过程中,从主控制器传过来的数据,首个字节为CMX618寄雷诺运动1级方程式组合的添加剂制造经理 Patrick Warner表示:“我们的创新依赖于大量生产和测试高性能风洞模型的能力存器的地址,然后,数据就会源源不断地传人此寄存器中;同样,从CMX618内部寄存器读出数据时,首先也要写入寄存器的地址,确定位置,然后就可以从此寄存器中读出数据了,直到传输完为止。

3 应 用

该语音通信模块已经成功应用于900 MHz数字无中心对讲机中,图6为900 MHz数字无中心对讲机各功能模块的结构简图,图中的语音模块与微控制器部分即为涉及的内容。如今,民用对讲机逐步数字化已是大势所趋,国内外众多机构已经投入了大量的人力、物力进行研究和开发,故此系统有着广阔的发展空间。

4 结语

研究了CMX618在语音通信系统中的应用,虽然CMX618刚刚研发出来,很多人还不了解,但它的诸多优越性能已足以受到广大设计者的青睐。基于该芯片设计的数字语音通信系统,有很好的清晰度和稳定性,在通信产业迅猛发展的今天,必将有着广阔的应用前景。

NDW-2000微机控制扭转试验机
50T电液伺服弹簧疲劳试验机试验台
CR金属缠绕试验机
落地式万能电子试验机